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Ring magnetic susceptibilities in conjugated hydrocarbons
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In the context of an SCF =-clectron theory an exact expression is derived
which yields x.+, the total m-electron contribution to the magnetic suscepti-
bility perpendicular to the plane of a polycyclic conjugated hydrocarbon.
Once given the first-order correction to the bond-order matrix of the
molecule in question {which, in the present calculation, is obtained via a
coupled Hartree-Fock procedure), this expression makes no further appeal
to the London integral approximation. The terms which occur in the
expression for y,- due to the ‘integrated current densities ' correspond to
those which would have arisen if the London approximation had been
invoked, the remaining terms being, in general, non-zero if this approximation
is not made. The relative ‘integrated current densities’ associated with
the various constituent rings in 12 molecules agree well with the correspond-
ing ‘ring current’ intensities estimated via the London—Pople-McWeeny
method,

It is shown that for pelvcyelic conjugated systems which are predominantly
diamagnetic, the total x,L for a particular molecule can to a good approxima-
tion be partitioned into a sum of individual contributions from each of its
constituent rings. Hence the intuitively appealing idea of a ‘ ring suscepti-
bility > can be preserved, even when the whole of x.,%, and not just that
part of it due to ‘ ring currents ’, is calculated. When an appropriate set of
Pascal-type constants is derived from the experimental data and calculated
¥~ for benzene substantial agreement with experiment is found for a wide
range of benzenoid hydrocarbons. This is evidence for regarding w-electron
‘ ring susceptibility * as an additive property within each individual molecule
of this type.

1. INTRODUCTION

A full @b initio calculation of the magnetic susceptibility of a general poly-
cyclic conjugated molecule is not practicable at present; even when adequate
ground-state wave functions are available, calculation of the paramagnetic part
of the overall susceptibility is not possible since the required [1] excited-state
wave functions are usually not known to the same accuracy [2, 3]. Resort has
therefore been made to empirical and semi-empirical methods. In the most
elementary of these it is assumed that the overall susceptibility of a given
molecule may be broken down into atomic contributiens, with extra terms
accounting for certain special features such as double bonds [4, 5]. It has
been realized for 50 years that this simple model produces poor results when
applied to conjugated hydrocarbons, and it was suggested [6-11] that the large

+ Deceased, 7 January 1974.
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anisotropy of magnetic susceptibility observed in these molecules might be
due effectively to their m-electron systems. Although some classical treatments
have since been proposed [10-17], these 1deas, and later extensions of them to
N.M.R. chemical shifts, have mainly been formulated quantum-mechanically
[18-32].

The starting point in some of the more recent SCF approaches is a calculation
of the interaction of the current density [1, 33, 30, 28] induced in the 7-electrons
of the molecule by the external magnetic field, either with the field wself (to
give the magnetic susceptibility), or with a nuclear magnetic dipole (to estumate
an N.M.R. chemical shift). Using such an approach Amos and Roberts [30]
made several approximations to reduce the current density in the m-electron
system of a conjugated molecule to a sum over pairs of chemically bonded atoms.
The ‘ bond current densities ’ so obtained depend on the first-order perturba-
tion of the bond-order matrix. However, the uncoupled Hartree—Fock scheme
they used did not give this directly and so it had to be estimated by the pro-
cedure of Feenburg and Goldhammert [30, 34]. This latter approximation
(which can be obviated by use of a coupled Hartree—Fock procedure [21]) need
not be invoked in the case of a calculation on benzene, Even so, the calculated
m-electron susceptibility (exclusive of certain terms considered to be *local " in
character) can vary over a range of ca. 25 per cent, depending on whether or not
the London approximation is adopted. This approximation should therefore
be avoided whenever possible, as has also been found in the caleulation of proton
chemical shifts [35, 29, 32]. _

Caralp and Hoarau [22] have recently developed 2 new perturbation approach
for calculating w-electron susceptibilities, within a Goeppert-Mayer and Skiar
[36] framework. They used Slater-type orbitals modified by a vartational
factor and their estimate of the m-electron contribution, x, %, to the total sus-
ceptibility, y*, in the direction perpendicular to the molecular plane is arguably
the best calculation so far for this type of molecule ; it is also quite independent
of the other methods discussed here. They also attempted to calculate the
m-electron contribution to the susceptibility in the molecular plane, y, 1. We
have not tried to estimate this as we feel that the i1dea of a o—= separation will
not be valid in this case.

On a more prosaic level, since the most striking and obvious feature of a
polyeycelic hydrocarbon is that it contains rings, there has traditionally been a
tendency to break down the total contribution of the  mobile * =-clectrons to
¥,© (or to protan chemical shifts), into ring- rather than bond-terms and to talk
of entities such as ‘ring currents’. It would, therefore, be of interest to see
whether, in the context of a ‘ semi-rigorous * [30 a] SCF approach which makes
as few traditional approximations as practicable, the overall y,* for a given
polycycelic molecule can be apportioned into ring contributions and hence to
establish whether any quantitative credence can be given to the intuitively
appealing idea of ‘ring susceptibilities ’ as an additive property within each
individual molecule. Tn principle, this concept appears reasonable, for the

+ With reference to the extensive footnote on p. 1420 of [31], it now seems more likely
that the non-conservation of * bond current densities * reported in [30] is due to the use
of the uncoupled Hartree—Fock procedure, with Feenburg—Goldhammer correction, rather
than to a2 neglect of certain non-bonded terms. As is shown in § 2, however, entities of
this sort are not strictly bound to obey any Kirchhoff type of conservation law,
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expressions obtained in the current-density approach [1, 33, 30] can be in-
terpreted as implying that each element of volume associated with the planar
system makes its own contribution to the perturbation energy arising as a result
of the presence of the external magnetic field. If, therefore, some sort of
volume could be allotted to each ring, and if an integration were to be performed
over that volume, then that ring’s contribution to the total y,* should be ob-
tained. Alternatively, if we were to use the LLCAO approximation, then omitting
everything except the atomic orbitals of a particular ring, we would again obtain
an estimate of that ring’s contribution to x,*.

The following considerations, therefore, were the stimulus for the present
work.

(1) The separation between ‘local’ and ‘non-local’ m-electron effects
seems largely arbitrary and it would therefore be more sound to calculate x,*
assuming o—w separation.

(2) Some applications of the London integral approximation used previously
[30] are avoidable and consequently an exact expression for x, * may be derived
(see §2.2). 1t depends on a knowledge of the bond-order matrix for the
molecule and its first-order perturbation ; this may be estimated via the coupled
Hartree-Fock procedure of Hall and Hardisson [21]F.

(3) Many recent formalisms effectively rely on a ‘ring current’ picture
which, although conceptually useful, does represent a grossly incomplete
physical picture—particularly with regard to the paramagnetic nature of the
m-electron contribution in certain conjugated systems. Because of this and the
fact that the induced currents have a far from simple pattern even in diatomic
molecules [37, 38] it would seem more legitimate to describe these currents by
their equivalent magnetic multipoles at a particular point {§ 2), rather than in
terms of a model of linear currents which is classical and oversimplified,

(4) For the calculation of magnetic susceptibilities by this method, it is
sufficient to obtain the magnetic dipole moment. As indicated, however, we
should still like to preserve the idea of a  ring susceptibility ’, and this can be
achieved (as will be seen in §4.1) if the appropriate moment is separately
evaluated for each ring of the polycyclic conjugated molecule in question.

2. THEORY
2.1. General formulation

The current density at position r is given by the familiar expression [1, 33}
. al teh &2
i(r)= kZ; § [9—”1 (PFV e — V%) = A("#Ni*lﬁ} 3(r—ry)drydry .dry, (1)

+ It sheuld be peinted out, however, that in deriving their coupled Hartree—Fock method
for calculating p!, the first-order correction to the bond-order matrix of the conjugated
system in question, Hall and Hardisson invoked a series of assumptions which are tantamount
to the London approximation. Furthermore, it is by no means an easy matter to calculate
p* without following this procedure. A similar philosophy was adopted by Edwards and
McWeenv [28] in the context of magnetic susceptibilities and N.M.R. chemical shifts,
although they employed the density-matrix form of SCF perturbation theory which s,
however, mathematically equivalent to the fully coupled Hall-Hardisson approach (sze

[27h.
3A2
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where i is the wave function describing the N-clectron system and A is the
vector potential due to the constant, homogeneous, external magnetic field, B.
The term in the Taylor expansion of the energy which is second order in B is

E® = — [ A(r). jY(r) dr:% Olp.A+A. p\1>+%: <0|42(03, (2)

where j is the component of j which is first order in B.  With the 2 axis along
the direction of B, the zz-component of the magnetic susceptibility may be
written

Y= [ AL jdr. 3)

The z-component of the term in the magnetic dipole moment first order in B is

M®=1f{k.rAjtdr
=;—35A.j1dr, 4)
where k is a unit vector along the z-axis. Then from (3) and (4):
N .
Xzzz""Bﬁq Mz(l)' (5)

For the purpose of calculating the magnetic dipole moment, the system may
formally be partitioned into any number of convenient sub-domains.  The
magnetic dipole moment of the whole molecule is independent of the point, @,
at which this moment, M(@Q), is calculated--although for each of the sub-
domains, Dy, this is not in general true because J, (in equation (7)) is not zero.
We then have

M=M(@)=Lf(r—@)Ajdr

N

i Qic )+ Z He,—-Q)A ), (6)

with
Jﬁg j(rydr and Mk(Qk):%g (r—Q ) Ajdr (7)

and D,UD,UD,U... U Dy =complete geometrical space.
In equation (6} we allow the dipole moment of each subdomain, D;, to be
calculated at any convenient point, @,

Tt is especially of interest to consider the choice of a particular set of sub-
domains, D,, such that the integrated currents, Jy, are zero. In some cases
this condition may be brought about by the assumption of virtual surface
currents in the boundary between pairs of domains, whose effect in the overall
integral vanishes. With such a set of sub-domains, equation (6) becomes

M:;Mk (8)

and we thus have a simple law of additivity for the magnetic dipoles which will
also hold for the magnetic susceptibility.
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2.2, Application to conjugated molecules

The theory as it is developed in § 2.1 is largely formal since it assumes that
{0> and |1> are exact solutions to the zero- and first-order equations. When
non-exact wave functions are used one should therefore strictly ask whether the
results of § 2.1 hold at each level of approximation. However, as we are about
to apply an approximate analogy of this formalism in the context of a semi-
empirical calculation, we do not consider these problems further.

The wave function, i, describing a planar conjugated molecule is, as usual
[30], assumed to be of the form of a {closed-shell ) Slater determinant of molecular
orbitals (MO), ¢, themselves taken as a linear combination of atomic orbitals
(AO), xz.. Two types of atomic orbitals have been used in minimal basis sets
for molecules in the presence of magnetic fields : AO’s which contain approxi-
mate terms of one-electron one-centre eigenfunctions as far as those first order,
and second order, respectively, in B. In the first category are the so-called
‘ gauge-invariant * atomic orbitals (GIAO) obtained [18] by multiplying the
usual field-free AQ’s, w, (p, Slater functions in the present case), by a complex
exponential factor

huywkap(_%BkAm.ﬂ (9)
with
W= \%T [z exp (—Ir,), (10)

R, being the vector relating the centre of orbital y, to the origin of coordinates,
and 7,= |r—R,|. 'The term ‘ gauge invariance ’ here is thus supposed to refer
to the variational or perturbational procedure rather than the functions themselves
(see also [39]). Caralp and Hoarau [22] used basis functions of the second
type, in which an AO corrected up to second order in B, for a vector potential
with gauge origin at the centre of the atom, is multiplied by the same exponential
factor as above ; since our present theory depends only on that term of the current
density which is first order in the field, it is immaterial which type of function
we choose. In fact, we take the first.

Now, the MO,
br= 2 ApsXs (11)

may be expanded as a power series in the magnetic field.
After some manipulation, starting from equation (1), this LCAO formalism
leads to the following expression for the first-order electronic current density :

) &R " R,+R
ll=—Zz§{PﬂOkA(r_ 2 l) wo,

v [Psgt'-;k AR, ~R).r-" P} (wsvmwwaws}, (12)

where P,/ is the (s, ¢) element of the nth-order bond-order matrix {21, 30].
For the polycyclic conjugated systems of the type we consider, the relevant
clementary sub-demains will be each single ring, whose total integrated current
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will be seen {§4) to vanish by consideration of appropriate self-compensating
currents along the boundaries between sub-domains. Expressions analogous to
equation {8) will then apply, and we are left with the task of calculating the
magnetic dipole, M, of a single ring {the th one) ; this moment is independent
of the origin taken for the calculation.

In the present LCAO model the magnetic dipole moment first order in B
becomes

M= ¥ M, (13)

St

with
M, ={frAj,dr (14}

in which the sum is over all combinations of atoms s and # in the conjugated
system.

Considering the identity
r=4(R,+R)+[r—}(R,+R)] (15)

leads to
My=14k . HRAR)A L+ py (16)

in which p, is the moment about the mid-point between centres s and £, and is
given by
— B L o ;
[ 3“m_ %)'P.a-[n {(wm P“we) + ER»M R!iz ({"Jm M;: GJ[)}" (1/)
where p is the cylindrical radius from an axis parallel with the » axis, (which is
perpendicular to the molecular plane) through the mid-point of centres 5 and ¢
((, g) denoting | f*g d7). )., in equation (16) is the integral of that term in the
current density which is first order in B (equation (12)) and which nvolves
centres s and ¢ ; the expression for this 1s

b= dr

B 2h ¢

L= “"“62_”; (k- RHARfP.i‘f“_T?“PS.!E.) (wmexwt) (18)
along x, the axis directed from ¢ to 5. Equation {13) (together with (16)—(18))
is thus seen to be the LCAO analogy of equation (6) of the formal theory (§ 2.1)
and it thus gives directly the component of the total magnetic dipole moment
perpendicular to the molecular plane. Equation (16) also has the following
interesting interpretation : the London integral approximation consists es-
sentially in setting r in equation (12) equal to 3(R, + Ry)—that is to say, in making
the second term {in square brackets) in the identity (15), exactly zero ; now the
first term of equation (16), involving J,,, arises from the first term of identity
{15) when the latter is substituted in equation (12}, and it may therefore be
thought of as corresponding in some way to the London contribution t0 y, .
The second term, p., of (16) may then be regarded as a “ correction ’ to the
London estimate. Such a partition of the total m-clectron effect allows us to
compare (sce § 4.3) the J; terms calculated from equation (18) with the relative
values of * bond current densities ’ and ‘ ring currents * published elsewhere.
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[t is also important to emphasize that the integral of the current density, J.,,
is a pure vector which represents the rate of increase of electric dipole moment.
It has dimension (electric current) x (length) and units of C ms=! or D s,
It 1s, therefore, a physical quantity which is different from an electric current
and care must be taken to avoid confusion between these two concepts, How-
ever, a condition which must be satisfied by the entities ), is that

2 )0 {19)

since this summation represents the rate of change of electric dipole moment of
the molecule in question.

It should be noted that the current density itself satisfies the conservation
condition V. j=0 when the wave function used to define it is exact or is at
least an eigenfunction of some effective hamiltonian in which the potential energy
operator is scalar and multiplicative. Such is not the case when (as here) a
Roothaan-type of calculation is performed and quite extensive violations of
V. j=0may consequently occur—as has been observed previously by McWeeny
(personal communication, 1974). However, even in these situations, Y1

st

in equation (19) is still exactly zero for molecules having at least C,, symmetry
when the principal axis is the dircction of B (assumed normal to the molecular
plane) ; when this symmetry condition is not satisfied we find, however, that
2. )i s still quite small (for details see § 4.1).

5, £

2.3. Possible models for ving susceptibilities

We now consider how the m-electron susceptibility (and, therefore, the
magnetic dipole moment) normal to the plane of a given polycyclic molecule
might be partitioned into individual contributions from each of its constituent
rings.  Division of the whole of space associated with some polynuclear molecule
into fairly well-defined non-everlapping volumes followed by direct integration
of the total current density {according to equation (6)), is generally too difficult.
We shall, therefore, prefer to associate with each ring those terms in the double
summation (13) which are more obviously related to that ring ; for there occur
in the summation terms referring to the atomic orbitals on centres s and 7 in
one ring, and s— terms which refer to atomic orbitals at centres in two FIngs.
If the sizes of the terms in this second group were small, as we shall show to be
the case in §4, then we should be able to make a reasonable estimate of the
contribution from each individual ring to the total summation (13); all that
would be necessary would be to pick out those terms in the summation which
involve AO’s in the particular ring chosen, in order to obtain the contribution
of that ring to y, *.

It turns out that by far the most important terms in the summation of equa-
tion (13) are those arising from pairs of centres which are chemically bonded
(as Amos and Roberts similarly obscrved [30]); from the form of equations
(17) and (18) this is not uncxpected since, as the distance between centres s and #
increases, the integrals involving AQ’s on these centres decrease quickly and J,,
and p,, will do Iikewise. It would thus seem reasonable to start by assigning to
each ring only those contributions from the chemicaily bonded centres around it
and then to sec¢ how this initial approximation might be improved. As for
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those terms which are shared by two or three rings, the following policy will be
adopted : since we wish to simulate the result of an integration over an appro-
priate domain for each ring, it is logical to divide the p,, {moment) terms in
equation (17) equally between the two rings which share the bond s—# (s#¢)
and, when s=1, between the two or three rings which share the vertex s.
Furthermore, we find that if the (generally small) J,, terms (equation (18))
between non-bonded centres s and ¢ are neglected, calculated values of these
iﬂtegrated currents between chemically bonded centres exhibit a very gratifying
conservation (i.e. Kirchhoff-type laws are obeyed). We can, therefore, identify
a certain integrated current with each ring (which will be a characteristic relating
to all unshared bonds in that ring and, notionally at least, a characteristic of the
shared ones) by postulating the association, with those bonds shared by two
rings, of two opposite (and in general different) integrated currents whose sum
equals the actual integrated current calculated for that bond from equation (18).
In this way (as is shown quantitatively in § 4.1 and § 4.2) it is possible to divide
the moment of a general polycyclic molecule into contributions from its individual
constituent rings in such a way that each ring has a zero overall integrated
current, thereby satisfying a condition analogous to what in our ‘ exact’ treat-
ment (§ 2.1} is represented by equation (6) with the J, terms equal to zero
(i.e. equation {8)). In this model all terms between non-bonded centres are
neglecteé however, allowance could easily be made for the two-centre
“moment ’ terms between those centres which are not chemically bonded but
which are situated in the same ring, since the contribution of fhese non- ~bonded
terms can just be added to the previously calculated moment of the corresponding
ring.
The basic model, and the refinements to it just described, will now be tested
guantitatively.

3. CALCULATIONS

Calculations were performed on eight alternant hydrocarbons {(I) to (VIII)
in figure 1) and on four non-alternant ones {(IX) to (XII) in figure 2} chosen
so as to provide a suitably wide range of molecules. Tor each hydrocarbon,
the calculation was carried out in three stages :

(i} A calculation of the ground state of the w-electron system. 'This was
based on a Pariser-Parr-Pople SCF m-electron wave function with [
exponent, in equation {10), set equal to the standard value of 31:-8 nm™1;
an idealized planar geometry of uniform carbon-carbon bond lengths of
0-140 nm was used throughout. The « core integrals were calculated via
the Goeppert-Mayer and Sklar formalism [36]. Values of ~2-3%eV
{ca. —230 k] mol-1} and 11-08 eV (ca. 1101 kJ mol~1) were taken for the
B parameter, and the monocentric repulsion integrals, respectively, and
these were used in conjunction with repulsion integrals estimated by the
procedure of Mataga and Nishimoto [40] Some initial calculations were
also checked by Pariser’s parametrization [41].

{ii) A calculation of the perturbation induced by the external magnetic field
perpendicular to the molecular plane. The first-order correction to the
bond-order matrix was estimated via the coupled Hartree-Fock method
[21], by means of the programme of Lazzeretti and Taddei [42].
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(tii) Calculation of magnetic moments and integrated currents. With the bond-
order matrix produced in (i), and the first-order correction to it obtained
in (i1), the moments, u, (equation (17)) and integrated currents, J,, (equa-
tion (18)) were calculated. All integrations were performed analyticaliy
and computations were carried out on the Oxford University ICL 1906A
computer.

4. RESULTS AND DISCUSSION
4.1. The model of w-electron * ring susceptibilities’

Since one of the main aims of the present work is to investigate the possibility
of defining ring susceptibilities as an additive property within any given poly-
cyclic conjugated hydrocarbon, the individual contributions to y,* were sepa-
rately evaluated for each ring in turn, for molecules (I)~(X11), as described in
§§ 2 and 3, and the results are shown in table 1,

In columns (i)~{iv) of this table are entered the calculated =-electron con-
tributions to the (perpendicular) magnetic dipole moment of each ring (pro-
portional—via the factor B/Nu,—to the ‘ring susceptibility’) as follows :
(1) from the integrated currents around the ring (i.e. from J,, in equation {16),
5, t bonded}); (it) from the ‘ bonded moments’, p,,, of (16), (s, ¢ bonded);
(i1) from the ‘one-centre’ moments, w,; and (iv) from the ‘non-bond’
moments, u, (5, t non-bonded). All magnetic moments are in units of
107 BfNpg Am? (le. 1321 x 10 Am?T-'). Column (v) is the sum of
columns (i)-(iv) and gives, therefore, the w-electron ‘ring susceptibility * of
each ring (in the direction perpendicular to the molecular plane) on the basis of
the model discussed in § 2.3.  The validity of this model, involving separation
of y,* into contributions from the individual rings, can now be tested by com-
paring the last two columns (Nos. (vi} and (vii}) of table 1, for column (vii)
gives the result of an ‘ exact ’ calculation of the overall m-electron susceptibility
of the molecule in question, in which the complete sum in equation (13) has
been performed.

From the calculations on the 12 test molecules studied the following general
conclusions are drawn concerning the * ring susceptibility  model :

(i) For molecules constructed entirely from six-membered rings ((1)~{VII)),
the model is verv good; the error introduced by the idea of ring sus-
ceptibilities * is in alf cases less than 2 per cent and is usually well below
this limit,

(1) For the one non-alternant hydrocarbon studied in which both constituent
rings are unambiguously diamagnetic (azulene (IX)} the approximation
still holds to high accuracy (better than 1 per cent).

(i1} When some (or all) of the rings of a given molecule {whether alternant or
non-alternant) display strong paramagnetic behaviour, however, the
approximation 1s by no means as good. For example, in the case of the
alternant hydrocarbon biphenylene (VIII) in which the four-membered
ring is paramagnetic [43], the ‘ ring susceptibility * approximation intro-
duces an error of 46 per cent; in the extreme case of pyracylene {(XI1T)—
which actually has an overall m-clectron para-magnetism [44, 45], each onc
of its rings possibly being  paratropic’ [46]—the error is much larger
(ca. 15 per cent).
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(iv) As for what could be called the ‘ intermediate’ cases of fluoranthene (X)
and acenaphthylene (XI), in which the five-membered rings make only a
small (diamagnetic) contribution to y,*, the ‘ring susceptibility ’ model
again fares very well—its predictions differing from those of the ‘ exact’
calculation by 1 per cent and 3 per cent, respectively.

Over the whole range of molecules considered, therefore, with the sole
exception of the calculations on pyracylene {(XI1I), the differences between the
results of the ‘ exact ' calculation and the predictions of the * ring susceptibility ’
model are all well below a * threshold * value of 5 per cent.

4.2. Comparison with other complete m-electron calculations

The present results for y,* may be compared with the only other published
calculations of this quantity, by Amos and Roberts [30 a] (for the special case
of benzene) and by Caralp and Hoarau [22] {for several alternant hydrocarbons).
Our results for benzene agree with those of Amos and Roberts [30 a] when our
‘one-centre bond-moment’ contributions {considered ‘local ’ in the Amos-
Roberts calculation) are subtracted from the benzene results presented in table 1.
Caralp and Hoarau performed a special perturbation calculation, based also on
a Goeppert-Mayer and Sklar formalism [36], with gauge-invariant field-
modified atomic orbitals determined up to second order in the field. They
obtained various contributions to y, - which sum to totals differing by at most
1-5 per cent from the correspending x, * values (given in column (vii) of table 1)
calculated by the present method, for the six molecules common to both studies.
This good agreement between the two sets of calculations provides a reassuring
check on Caralp and Hoarau’s method, and on the present method, of calculating
x»"; it also reflects well on Hall and Hardisson’s coupled Hartree—Fock pro-
cedure for estimating the first-order bond-order matrices——in fact, the con-
cordance between the two sets of calculations is probably a more reliable test of
the validity of this latter procedure than comparison of predictions based on it
with experimental data on total susceptibilities (see § 4.4).

In ‘ring-current’ calculations of m-clectron susceptibilities one usually
hopes that the contributions of the m-clectron terms which have been neglected
(which, like those from the o terms, are considered, a prior, ‘ local ” in nature)
are rigorously proportional to the number of carbon atoms in a given molecule.
From the results of the present calculation, this hypothesis may be tested by
dividing the sum of the ‘ bond moments °, and the ‘ one-centre * and * non-bond
moments ’ (columns (it )~(iv), respectively, of table 1) by the number of carbon
atoms in the corresponding molecule. Such an exercise dees indeed verify
that for all hydrocarbons which are made up of six-membered rings this ratio is
practically constant (fluctuations well below 5 per cent). 'The apparent con-
stancy of this ratio may thus be the reason for the good results often obtained
by the policy of including the ‘ non-London ’ m-electron contributions with the
“local * terms ; this procedure has been adopted in many previous calculations
(e.g. [26]) which, by and large, have been concerned with condensed benzenoid
hydrocarbons. The same cannot be said, however, for the other types of
molecules considered here (e.g. (VII1) and (X11)) in which the corresponding
ratios appear to fluctuate from molecule to molecule by up to 30 per cent,  The
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present method of calculation would therefore appear‘ to be particularly ap-
propriate when wider ranges of comjugated hydrocarbons, rather than simply
condensed benzenoid molecules, are to be considered.

4.3, The integrated m-electron current densities ; comparison with
Y ring currents’
Although, as we have emphasized in §§ 4.1 and 4.2, the contribution of the
‘ integrated m-electron current densities * {equation (18)) associated with the
various bonds of the polycyclic network represents only a part of y,*, the inte-
grated w-electron current density associated with any unshared bond in a

¢ Integrated Reference to
m-electron ‘ Ring ‘ ring current’
Molecule Ring current '] current * § calculation
Benzene (1) A 1 1
Naphthalene (1I) A 1-07, 1-09, [20, 48]
Anthracene {111) A 1-05, 1-08, [48]
B 1-28, 1-28,
Phenanthrene (IV) A 1124 113, [48]
B 0-95, 0-97;
Pyrene (V) A 0-94, 0:96, (49} -
B 1-33, 1-32,
Perylene (V1) A 1-03, i 0-97, [49, 50]
B 0-21, 023,
Diphenyl (VII) A 0-96, 0-93, This work]|
Biphenylene (VIII) A 0-40, 0-25, This work |
B —1-76, —1-80,
Azulene (IX) A 1-03, 106, (191
B 1-27, 115,
Fluoranthene (X) A 1-00y 0-98, [52]
B — 004, 0-05,
C 0-89, 0-86,
Acenaphthylene (X1} A 0-93, 092, This work |
B —0:14, 010,
Pyracylene (X11I) A - (3-20, —0-38, {45}
B —2-15; —2:31,

1 In a ring containing a bond between centres s and ¢ which is unshared with any other
ring, the ®integrated m-electron current’ for that ring is the quantity Js, the expression
for which is given in equation (18) ; if the bond s~¢ is shared between two rings, then Jg
is the algebraic stm of the ¢ integrated w-clectron currents * which characterize the two rings
sharing the bond s—f (as described in § 2.3).

1 Values given as ratios to the ‘ integrated w-clectron current ’ caleulated, by the same
method (equation (18)), for benzene (this value being ¢*B2m x -946 x 10~ A m~?}. A
positive entry therefore indicates diamagnetic character, a negative one, paramagnetic
character.

§ Values given as ratios to the m-electron * ring current’ calculated by the same method
(Hiickel-London-Pople-McWeeny [18-20, 31]), for benzene. Again, a positive entry
indicates diamagnetic character, a negative one, paramagnetic character.

| Via the programmes described in {51}

Table 2. Comparison between the ‘integrated w-electron current’} around each ring,
calculated as described in §§ 2.2 and 2.3, and the corresponding * ring current’
calculated by the London-Pople-McWeeny method [18-20, 31] based on a simple
(‘ topological * [47, 45]) HMO.
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particular ring #s a quantity which is analogous to what the London—Pople-
McWeeny method [18-20, 31] would identify with the ‘ #-electron ring current’
intensity in that ring (see §2.2); and, in the case of a bond which is shared
between two rings, the ‘ integrated current density ~ associated with that bond is
comparable with the algebraic sum of the ‘ring current’ intensities which
characterize the two rings flanking the given bond. It is, therefore, of some
interest to compare computed values of the integrated 7-electron current densi-
ties characteristic of the various non-equivalent rings in the 12 molecules studied,
with the corresponding (and long-familiar) ‘ ring currents’ .  Such a comparison
is made in table 2, where the ‘ integrated m-electron current densities * and the
‘ring currents ’ are expressed as ratios to the respective values for benzene. A
regular, idealized geometry was again assumed in all cases and the calculations
were based on a simple (‘ topological * [47, 43]) HMO wave function. Under
these conditions, no subjective parameters whatever are involved in the ‘ring
current ’ ratios (expressed relative to the benzene value) given in table 2 [45, 47] ;
all are immediately and automatically determined (via, for example, equation
(25) of [31]) once the molecular topology and the ring areas have been specified
[47].

It can be seen from the table that the two quantities compare well (to within
0:06 of these units) for molecules (1)-(VIII), all of which are constructed from
hexagonal rings. For the strongly diamagnetic non-alternant hydrocarbon
azulene (I1X), however, the correspondence is less evident.  As was the situation
with the * ring susceptibility " idea discussed in § 4.1, the most marked disaccord
between the two quantities arises in the case of those hydrocarbons which have
some {or all} of their constituent rings © paratropic’ [46] in character—pyra-
cylene (X1I1), biphenylene {(VIII), even acenaphthylene (X1I) and, to a certain
degree, fluoranthene (X).

4.4, Comparison with experiment : the effect of the a-electrons

In order to compare the present theoretical predictions with experimental
data, it is necessary to estimate the susceptibilities contributed by the o-electrons
in these molecules for, on the assumption of an exact o7 separation, only the
m-electron contribution to the total susceptibility has been calculated by the
formalism so far outlined. There are, however, well-established empirical
methods for predicting the susceptibility due to a framework of ¢-bonded
atoms, in terms of a scheme of additive Pascal constants [4, 5]. For example,
Hoarau [5], from extensive experimental data on a large number of hydrocarbons,
estimated atomic contributions of —25 x 10712 m?® mol~t (—2:0x 10-% in c.g.s.
e.m.u.) for a hydrogen atom, and —93 x 10712 m? mol-t (—7-4x10-° c.g.s.
e.m.u.) for a carbon atomt. Hoarau’s value for the hydrogen Pascal constant
can quite properly be adopted here since any hydrogen contributions to the
molecular susceptibility have been completely unaccounted for in the previous
m-electron calculation (§4.1). The situation with respect to carbon, however,
is different ; all contributions from the 2p, orbitals have been fully considered
in the previous calculation of x,*, given the assumption of a complete o-7
separation.

+ Note that in the SI system ymaar is taken to be rationalized, and in the c.g.s.
e.m.u, system to be unrationalized. Thus

Xmolar(ra:ional)f’mﬂ mol " t=47x 108 Xmolar(irrational)/‘cms mol-1.
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Since there do not appear to be any Pascal-type constants available for a
carbon atom depleted of its 2p, electron, the estimation of such a quantity was
attempted here solely from the experimental data on benzene [53], which appear
more reliable than those on most other molecules. A suitable Pascal constant
for carbon, exclusive of the contribution from its 2p_ orbital, and in the direction
perpendicular to the plane of the ring, (y,*(C}), was taken as —77 x 1071 m?
mol~l. The carbon atom contribution to the ‘ in-plane ' susceptibility {y (C})}
was also estimated, vielding the value —48 x 10-1* m?® mol~'t.

In table 3 the following quantities are listed for each of the 12 molecules
studied : {1} X, ca1c "> the total y, ' calculated as described in §§ 2.3 and 4.1,
from a summation over rings (and transcribed from column (vi}) of table 1);
(i1) Xy eure™s the c-electron contribution to the magnetic susceptibility per-
pendicular to the molecular plane, estimated from Pascal constants as described
above > (111) X{-nl(-l = Xa cal(:i + X L'alc.—L 3 (“) Xeale Hr the * in—plane * contribu-
tion to the magnetic susceptibility, calculated from Pascal constants;
(%) Feare = (Xeate ™+ 2xcare 1 )/3, the trace of the calculated susceptibility tensor ;
(Vi) Ayeate™ Xeale™ — Xcale | the calculated anisotropy of magnetic susceptibility.
These are then compared in the next four columns of table 3 with corresponding
quantities derived from the experimental data available [5, 11, 53-68], the
appropriate references to which are given in the extreme right-hand column of
the table. Some attempt was made to evaluate the large amount of experimental
work to be found in the literature in order to select that which seems to be the
most reliable ; that considered the best (usually the most recent) is listed first.

The agreement between calculated and experimental susceptibilities is seen
to be very satisfactory, again apparently justifying, a posterior?, the approxima-
tions inherent in a m-electren calculation, and in Hall and Hardisson’s method
[21] for obtaining the perturbed bond-order matrix. The present results,
overall, also compare with experiment as well as, or better than, those of some
other recent investigations [26, 42]. The relatively large error (5-11 per cent)
which persists in the final y = values of Caralp and Hoarau [22} in spite of the
rigor of their caleulated y,* terms (see §4.2), may be attributed to their use of
the theoretical estimates of Pascal constants due to Guy and Tillieu {69, 70] in
computing the o-electron contributions. (The Guy and Tillieu constants were
not used in our work since they are known [69, 70] to be of low accuracy.)

In the present calculations all bond lengths were assumed to be uniform.
Such an approximation is not an intrinsic feature of the method of calculation
outlined in § 2, and it is possible that using real geometries might improve the
agreement with experiment, although, in the case of the diamagnetic condensed
benzenoid molecules, probably only marginally so (see [71]). Use of 2 * variable
bond-length’ SCF LCAO-#-MO method [72] certainly seems to be necessary
for a realistic treatment of strongly paramagnetic z-systems such as (VIII)
and (XII) (see [72, 73, 45]). 'These various refinements were not, however,
incorporated into the present calculations since our primary aim here has been

+ It should be noted that the Pascal constants uscd by Amos and Roberts [26] were
obtained by fitting ¥(C) and yx-(H) (as well as x'(C) and x{H)) to a set of experimental
susceptibilities. In their investigation, x-(C) includes a contribution not just from the
o-electrons (as does our ¥,2(C)) but also one from seme w-electron cffects (considered
“local ’ in that calculation). This is why it would not have been legitimate for us simply
to have taken over the Pascal constants used by Amos and Roberts [26] for the purpose of
comparing our (complete) m-electron calculations with experiment,
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to test quantitatively the legitimacy of general physical concepts, such as the
‘ring susceptibility ' model proposed in § 2.3, rather than to provide very
accurate estimates of experimentally measurable magnetic quantities, Even so,
the results in table 3 (admittedly, for the most part, on predominantly dia-
magnetic molecules) are very satisfactory.

5. CoNCLUSIONS

{1) In the context of an SCI m-electron theory, an exact expression has been
devised which yields the total y, ' of a conjugated polycyclic hydrocarbon
(88 2.2 and 2.3). Once given the first-order correction to the bond-order
matrix of the molecule in question, this expression (equations (13)—(18))
does not rely on the London integral approximation.

(2) It has been pointed out that certain terms which occur in the expression for
x»+ (namely those due to J,, of equation (18)) correspond to those which
would have arisen if the London approximation had been invoked; the
remaining terms (due to the p,, defined in (17}) are, in general, non-zero
(§ 2.2). The relative integrated current densities associated with the various
constituent rings are in a very close numerical correspondence with the
previously calculated °ring currents’ estimated via the London-Pople-
McWeeny method (§4.3).

{3) Even when the whole of x,* is calculated, and not just that part of it which
1s due to what most previous treatments have regarded as * ring currents’,
it 1s indeed still possible (§§ 2.3 and 4.1} to break down the total »-electron
contribution to y ' into terms associated with the individual constituent
rings of the molecule concerned and hence to preserve the intuitively appeal-
ing idea of a ® ring susceptibility . However, whereas additivity of ‘ ring
current * contributions within a given molecule gave only part of y_ ', the
‘ ring susceptibility * contributions sum to the total y,* for that molecule,

(4) Previous calculations have often sought to incorporate those w-electron
contributions to y,* which are lost by application of the London approxima-
tion with the empirically determined *local® o-contributions. This pro-
cedure has been shown (§4.2) to have some justification when applied to
condensed benzenoid hydrocarbons, but it is less valid for other types of
conjugated systems.

(5) Finally, when an appropriate set of Pascal-type constants is derived from a
calibration involving the calculated x,* and the various susceptibility com-
ponents measured experimentally for just one reference molecule (benzene),
very satisfactory agreement with experiment is obtained for a wide range of
conjugated hydrocarbon systems (§4.4). The comparisons detailed in
table 3 are as good as, and in the case of some molecules better than, thase
arising from previous calculations.

Since the calculated y, " entries in table 3 were obtained by a summation

over rings, as deseribed in §§ 2.3 and 4.1, this again emphasizes the quantitative
nature of the concept of 7-electron * ring susceptibilitics * as an additive property
within individual conjugated polycyclic hydrocarbons which are predominantly
diamagnetic.
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